
Journal of Statistical Physics, I1ol. 38, Nos. 1/2, 1985 

The Quantum Ground State of a Heisenberg 
Ferromagnet with an "Easy-Plane" Type 
Anisotropy 

A. A. Zvyagin 1 and V. M. Tsukernik 1 

Received April 2, 1984 

For the Heisenberg ferromagnet with the "easy-plane" type anisotropy the 
ground state energy and the magnetization are found with the help of pertur- 
bation theory supposing that the anisotropy energy is less than the exchange 
one. The study is carried out exactly without using any spin operators represen- 
tation. Therefore, it is valid for a spin of any magnitude. 
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In a uniaxial ferromagnet with an "easy-plane" type anisotropy, situated in 
the longitudinal constant magnetic field, the projection of the total spin of 
the system along the chosen axis is conserved. That is why the stationary 
states can be classified by the magnitude of  that projection. If  the field is 
sufficiently high one, the ground state corresponds to the maximum 
projection of  the total spin, and, therefore, to the maximum projections of  
each spin separately. In that case, the ground state can be found exactly. 

If  the field is less than the critical one defined by the anisotropy 
constant it is not so far possible to find an exact solution. However, if one 
can consider that the magnetic anisotropy energy in the typical ferromagnets 
is less than the exchange one, we can make use of  perturbation theory. 

In the present paper the ground state energy and the magnetization are 
calculated in the interval of  fields less than the critical one without using any 
approximate representation of  spin operators. The analogous system was 
considered in paper Ref. 1 using the Hols te in-Pr imakoff  representation. It 
turns out that the magnetization, as it must be, is the continuous one with the 
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field critical value and that the magnetic susceptibility has a discontinuity. 
The results obtained in this paper concern the one-dimensional system as far 
as, first, in this case the calculations may be obviously brought to an end; 
second, the discontinuities of the magnetic characters are displayed most 
strongly there. 

If the field is higher than the critical one, the ground state energy, 
calculated exactly, and the semiclassical one, which is found using the 
Holstein-Primakoff representation (2) coincide. In the interval of fields, less 
than the critical one, such coincidence, generally speaking, is not expected. It 
is found, still, that if a separate atom's spin S > I, the quantum results turn 
into the semiclassical ones. 

1. The Hamiltonian of the considered system has a form 

~ =  --23" ~m SmSm+l q- 2 m (SZm)2 -- 2~/nZm Szm (1) 

where S m is the operator for the spin (S >/1) at the mth site, 3" > 0 is the 
exchange integral for the nearest neighbors, fl is the magnetic anisotropy 
constant (the positivity of fl corresponds to the easy-plane case), ~t is t h e  
magneton, and H is the external constant magnetic field. 

As an unperturbed Hamiltonian ~00 we choose the diagonal part of 
Hamiltonian (1) in the representation of the eigenfunctions of the exchange 
interaction treated to the definite magnitude of the total spin projection. The 
nondiagonal part in this representation is the perturbation V the contribution 
to which is given only by the energy of the anisotropy. Such choice of the 
unperturbed Hamiltonian permits us to consider the field of any strength. 

The vector of the unperturbed ground state is the vector 

I o) = c ( s - ) "  Io) (2) 

Here, S -  = S x - i S  y is the cyclical total spin projection, I0) is the vector of 
the "ferromagnetic" state with the maximum magnitude of S z, equal to N S  

(iV is the number of points), C is the normalization multiplier, and n >/0 is 
the integer number governing the magnitude of the total spin Z projection cr n 
in the state I~Vo): 

a n = N S  - n  

Taking into consideration the perturbation, the ground state energy is 
determined as 

E o = E~o ~ + ECo 2) + ... 
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Owing to such choice of perturbation, the correction E~" is equal to zero, 
and the unperturbed energy is 

E(o ~ = (tffol~e~o I~o) = - Z I S 2 N -  2?aHNS + f i N S  2 

fl ( 2 S - 1 )  [ 2/uH(2NS-1)] 2 
--2-" ( 2 N S - 1 )  • NS f l - f f ~ T )  

f l ( 2 S - 1 )  l [ 2pH(2NS-1) I  2 
+ 2(-g~ L i) n - NS - fl(2S - ~ (3) 

The index n is chosen by the condition of the last term minimum in (3). 
Considering the integerness of n and neglecting here and further on the terms 
of the order o f ( N S ) - l ,  w e h a v e n = n  o or n = n  o + l  

n o = [ N S ( 1  41zH 

depending on the magnetic field strength [square brackets in (4) mean the 
integral part]. As a result the last term in (3) becomes of the order of 
(2NS)-~ and may be neglected. Note that in the zero-order approximation, 
the relative addition (proportional toil) as well as the value of n o has no 
exchange constant. Then the form of the wave function in the ground state is 
dictated precisely by the exchange interaction. 

2. The dependence on the exchange constant appears in the next, 
second approximation of perturbation theory: 

Let us treat vector I~'0) with operator V to find the nonzero matrix 
elements which gives 

,8 
v l ~ o ) = y  

n(n - 1) 
(0[ (S+ )"(S-)  n 10) 1/2 (S-  )"-2 ~m (S;)2 I0) 

One can see that vector V I g%) is the linear combination of vectors, 
corresponding to the two-magnon excitations with the ( n - 2 )  multiple 
"turned" total spin. The states of j4= 2 magnons with the ( n - j )  multiple 
"turned" spin have different energy, and, therefore, are orthogonal to V Iq/o). 
On the other hand, the two-magnon states with the other multiplicity of total 
spin "turning," though having the same energy, differ by the value of an, and 
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are also orthogonal to V[~0). As one can see from the form of the series of 
V l~,0), only two-magnon states with the zero total quasimomentum are 
making the contribution to energy. It is well known (3) that there are no 
bound states if the total quasimomentum is zero without the nondiagonal 
part of the anisotropy energy contribution. 2 

The wave function describing the continuous spectrum states is defined 
by the equation 

I g t 2 ) =  ~ A l , m S ? S m ( S - ) n - 2 1 0  ) (6)  
l < m  

where the coefficients At,m, representing the wave function in the lattice site 
representation, satisfy the set of equations which follows from the 
Schr6dinger equation with the unperturbed system Hamiltonian(4): 

- 2 J " S ( A t _ I ,  m ~- al+ l, m q- Al,m_l + Al,"+ l) 

+ [ 8 • S - f l ( 2 S -  1 )+41 . tH]Z t ,m=ea i ,  m, l < m -  1 

- 2 J S ( A m _ 2 ,  m + A"_ 1,"+, ) -- 2~ ' (2S -- 1)(Am_l.m_ 1 +Am., .  ) 

+ [2J ' (4S - 1) - (2S - 1)fl + 4pH] A,._,,, .  = eA,~_,, m 

--2,ff 'S(Am_l, m q- A,. ,"+ 1) ~- [ 8 ~ S  - -  (2S - 1)fl + 4/~H] Am.., = gain, m 

Solving this set we find 

1< 21 vl ,o>{ 2 
S z sin 2 K 

}(2S - e i ')  cos x - (2S - 1) ei'~l z 6~'~ 
(7) 

fl ( 2 S _ 1 )  n ( n )  
a =  T 

where K is the summary quasimomentum and x is the quasimomentum of 
the magnetons relative motion. 

The energy E~ ~ in the denominator of Eq. (5) is found as a diagonal 
matrix element 

During its calculation one must take into account that the operator of the 
exchange energy commutates with ( S - ) "  and q V2) is the eigenvector of the 
Zeeman energy 

--21~H ~ SZm 1~2) = - - (NS  -- n) 2pH I tyz) 
m 

2 We note that in the case of "easy-plane" type of anisotropy if fl < J ' ,  there are no bound 
two-magneton states either. 
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When calculating the diagonal matrix element of the magnetic anisotropy 
energy, one has to deal with the operator S +S  - acting on the vector 12), 
which coincides with ]q/2) as n = 2 .  As far at S + S  - = $ 2 - S z 2  + S  z, the 
result is determined by treating 12) with the square total spin operator. One 
can make sure that 

~ 2 1 2 ) =  I 
( N S - 2 ) ( N S - 1 ) I 2  at K #: • 

( N S - 1 ) . N S I 2 )  at K =  2K or K =  -2K 

N S ( N S + 1 ) 1 2  ) at K = K = 0  

In our case K 4= 2• ( K =  0 but K v~ 0) that corresponds to the total spin 
equal to N S -  2. Therefore, the following recurrent correlation takes place3: 

( S + ) ~  ~ [2) = p [ 2 N S  - (p + 3 ) ] ( S + ) ~  ~ 12) 

using which we find 

E(O) i:(o) ( K ) z - -~0  = 8 ~ ' S  1 - c o s ~ - . c o s t c  +A (8) 

It is seen that the two-magnon state energy, existing with the (n - 2) multiple 
"turned" total spin, is separated from the energy of corresponding ground 
state by the gap depending on the magnetic field strength. With the critical 
magnitudes of the field determined from Eq. (4) by the conditions n o = 0 or 
n o = 2NS this gap vanishes which as shown below causes the appearance of 
the magnetic susceptibility discontinuity. With the aid of (7) and (8) we 
obtain an expression for the second-order correction to the ground state 
energy 

N A2S2 S sinZK 
E(~ 4-7- _~ l ( 2 S - e i ~ ) c o s x  - ( 2 S -  1)ei~] 2 

d~c 
8YS(1 - cos K) + A (9) 

Calculating the integral by residue theory and taking into account the 
smallness of the ratio A / • S ,  we find 

3 2 J s  (2g--T)- ss  (lo) 

3 Such correlation can be used to find the matrix element @2] vrgt0). 
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From Eqs. (3) and (10) one can obtain the magnetic momentum and the 
magnetic susceptibility at zero temperature 

A M = -  N (4~) 2H [ ( 6 S - I ) A  3 ] 
32J-----S fl(2S - 1) [ (2--S----'I-)TS t- T (JSA)1/z  l 

It is easy to see that at H = 0 the magnetic momentum vanishes linearly with 
the field, and the susceptibility tends to the finite limit. When the field 
approaches its critical strength the addition containing the exchange constant 
tends to zero as V ~ and the magnetic momentum defined by the unper- 
turbed ground state energy becomes nominal and equal to 2tJNS. As to the 
susceptibility, it has the form of 

N 3 (3.S)1/2 1 
A x h . . . c r -  3 2 J S  (4")2 "-4- " [(1/2) fl(2S - 1)(1 - H2/H~r)] 1/2 

results with the semiclassical 3. Let us compare the obtained 
consideration date, based on the Holstein-Primakoff representation for the 
spin operators. 

That representation is used in the coordinate system turned about the 
initial one in which the Hamiltonian is defined by Eq. (1). The axes of the 
new system can be selected in such a way that the classical spin system 
energy with the same Hamiltonian should be the minimum one. Retaining, as 
usually, only the term squared in the Bose operators and diagonalizing the 
Hamiltonian with the aid of the Fourier transformation and the Bogolyubov 
linear uv transformation, we shall obtain 

_ ct 1 
~ ' ~ - E  o + - ~ - ~  ( e ~ - A K ) +  ~ e K b ~ b  (11) 

where E~ J is the classical energy of the equilibrium spin configuration 

A I , : = 4 J ~ ' S ( 1 - c o s K ) + B ,  e K = ( A ~ - B 2 )  1/2 

B = ~ - [ 1  (4pH--))z- ] 
fl2(2S - 1) 2 ] 

The second term in (11) is the quantum correction to the energy E~ 1. Hence 
the first two terms are the ground state energy of the system in a 
semiclassical approximation. 

Using as above the smallness of the relative interaction in comparison 
to the exchange one, we shall expand the magnon energy e x by a small ratio 
B/A~ 

1 B 2 
~K ~ A K  

2 A x 
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The condition of smallness is broken at K small enough [K ~ (B /~ 'S ) l /2] .  
However, the region of the small K is insignificant when calculating the 
macroscopic values. As a result, for the semiclassical correction to the 
ground state energy we obtain 

B 2 N :'~ d K  N B  3/2 
E~o2)Cl - 

- - -  4 2~z )_~ 4 J S ( 1 - - c o s K ) + B  -- 8(2U'S) 1/2 (12) 

Comparing (10) and (12) we see that the quantum correction (10) in 
addition to its nonanalytical dependence on A, contains a regular part, 
proportional to A z. Accordingly, the magnetic susceptibility contains an H- 
independent addend. As to the singular parts of (10) and (12), they give the 
same field dependence, when substituting 2S - 1 with 2S. In such a way, the 
main difference between the exact quantum result and the semiclassical one 
consists in the presence of the regular part which is essential far from the 
critical field strength. If S > 1 Eqs. (10) and (12) coincide. The next 
corrections of perturbation theory give the higher-order additions by the 
small ratio A / J ~ S  than (10). 

The considered one-dimensional system differs essentially from the 
three-dimensional one because the magneton density of states in the case of 
one dimension has a square root discontinuity causing to the integral 
divergence in (9) at A = 0. In the three-dimensional case the integral at A = 0 
exists, so there are no singular terms in the correction E~2 ~ and the 
corresponding integral can be calculated at A = 0. As a result, the ground 
state energy has the following magnetic field dependence 

Eo 2 z : s  2 + (2 H) s (4 m 2 ] 
N - 4 f l ( 2 S  - 1) -~A j 1 f l z ( - ~ y  ])2 

where z is the nearest-neighbors number and the multiplier A depends on S 
and is determined by the integral containing the wave function of two- 
magneton states. In the three-dimensional case, the explicit expression of that 
function is so far absent. 

The susceptibility at the critical point of such system is finite and has a 
finite leap. 
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